Simulasi dan Verifikasi Prestasi Terbang Model Remote Control Flying Boat Saat Hidroplaning

Sayuti Syamsuar(1*)

(1) Pusat Teknologi Industri dan Sistem Transportasi, Badan Pengkajian dan Penerapan Teknologi (BPPT)
(*) Corresponding Author

Abstract


Pesawat Wing In Surface Effect A2B tipe B konfigurasi Lippisch mempunyai hambatan air yang cukup besar dibandingkan tenaga mesin saat hydroplaning. Makalah ini berisikan bagian dari analisis dalam perancangan untuk mengetahui karakteristik aerodinamika dan hidrodinamika dari remote control model jenis Flying Boat pada fase hydroplaning. Pada awalnya, dilakukan pemotretan 3D terhadap pesawat model Flying Boat menggunakan kamera laser untuk menghasilkan solid drawing pada program CATIA. Model 3D dianalisis dengan menggunakan piranti lunak CFx pada program AnSys. Planform sayap, memiliki dihedral dan menggunakan airfoil jenis NACA 23012. Karakteristik aerodinamika dan hidrodinamika untuk model 3 D dipresentasikan pada posisi sudut alpha =00. Sedangkan kecepatan yang digunakan adalah 0 sampai25 knots. Untuk memverifikasi data hasil simulasi, digunakan data uji terbang pesawat udara tanpa awak Alap-alap yang mempunyai T/W rasio yang sama, yaitu sudut pitch, kecepatan arah sumbu Z pada sumbu benda, ketinggian dan kecepatan. Gaya angkat aerodimaka arah sumbu Z pada simulasi RC model Flying Boat sebanding dengan gaya angkat aerodinamika arah sumbu Z pada UAV Alap-alap saat take off.


[The Hydroplaning Flight Performance Simulation and Verfication of a Flying Boat Remote Control Model] The Wing in Surface Effect Aircraft A2B type B with Lippisch configuration has higher hydrodynamics drag compared to engine powered aircraft during hydroplaning. This paper explains parts of analysis in aircraft design to identify the aerodynamics and hydrodynamics characteristics of flying boat remote control model during hydroplaning phase. At first, flying boat model was three dimensional photographed using laser camera in order to produce solid drawing for CATIA program. The three dimensional model, later, analyzed by using CFx software in AnSys program. The wing planform has dihedral angle while the airfoil used is NACA 23012. The aerodynamics and hydrodynamics characteristics of this three-dimensional model is represented for alpha =00. Whilst the speed used in simulation was 0 to 25 knots. In verifying the data of the simulation results, the Unmanned Aerial Vehicle UAV Alap-alap flight test data was used in which it has the same T/W ratio for the pitch angle, acceleration in Z body axis, altitude, and speed. The aerodynamics lift in Z axis of flying boat model during simulation is proportional to the aerodynamics lift in Z axis of UAV Alap-alap during take-off.


Keywords


remote control (RC) model flying boat; simulasi; hydro

Full Text:

PDF

References


Benson, T. 2005, Downwash effect on Lift, Glenn Research Center, NASA

Collu, M, Patel, M, H, Trarieux, F, 2008, A Mathematical model to analyze the static stability of hybrid (Aero-Hydrodynamically supported) vehicles, presented at the 8 th, Symposium on high speed marine vehicle, Naples

Lasauskas, Th, Lutz, M. Dietz, 2007, Influence of trailing edge tab on moment characteristics of NACA 23012 airfoil, ISSN 1648-7788, AVIATION, vol. XI no. 4

Iskendar, 2011, Kajian Aspek Hidrodinamika dan Gerakan Fase Pra Take off pada Kapal Bersayap, Program Doktor, Studi Teknologi Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya

Jamaluddin, A. 2004, Analisa dan Pengujian Hidrodinamika Kapal Bersayap (WISE 10), Indonesian Hydrodynamic Laboratory

John, D, A, Jr. 1995. Computational Fluid Dynamics, The Basics with Applications, Department of Aerospace Engineering, University of Maryland, Mc. Graw Hill, Inc., New York

Mehaute, B. L,. 1976. An Introduction to Hydrodynamics and Water waves, Springer, Verlag, Berlin

Roglev, P. 2013. Multidisciplinary Design Optimization of Amphibious Aircraft of Unconventional                       Aerodynamic Configurations, Po. Box 26, 4001, Plovdiv, Bulgaria

Syamsuar, S, Djatmiko, E. B, Wilson, P. A, Erwandi, Subchan, 2013, The Flight Performance Criteria for Adaptive Control Design during Hydroplaning and Ground Effect Altitude for Wing In Surface Effect craft, International Review of Mechanical Engineering (I.R.E.M.E), page 633-645, Vol.   7   No.   4,   ISSN   1970-8734,  PraiseWorthy Prize S.r.l

Syamsuar, S. 2015. The Aerodynamic Characteristics of a Flying Boat on the Ground Effect Altitude ; Case Study: A Flying Boat Remote Control Model at 0.20 m and 1.0 m Altitude, Jurnal Perhubungan Udara Warta Ardhia,  no. 3.

Ansys Training Manual. 2009. Chapter 1 Introduction to CFD/ CFX, Inc. Proprietary




DOI: http://dx.doi.org/10.25104/wa.v42i1.294.1-6

Article metrics

Abstract views : 916 | views : 481

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

WARTAARDHIA Indexed by:

Sinta Science and Technology IndexGoogle ScholarDirectory of Open Access JournalIndonesian Scientific Journal Database (ISJD)ROAD: the Directory of Open Access scholarly ResourcesPKP IndexGarudaDimensionsDimensions

Copyright of Warta Ardhia (e-ISSN:2528-4045, p-ISSN:0215-9066) Sekretariat Jurnal Transportasi Udara, Jl. Medan Merdeka Timur No. 5 A Jakarta Pusat 10110. Tlp. (021) 34832944, Fax. (021) 34832968. Email:litbang_udara@yahoo.co.id; warta.ardhia@gmail.com.

    Creative Commons License 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web
  Analytics View My Stats