Analisis Flutter Pada Uji Model Separuh Sayap Pesawat N219 di Terowongan Angin Kecepatan Rendah

Sayuti Syamsuar, Muhamad Kusni, Adityo Suksmono, Muhamad Ivan Aji Saputro

Abstract


Fenomena flutter akan terjadi apabila ada gaya dan momen aerodinamika yang berinteraksi berlebihan di permukaan sayap di dalam terowongan angin atau pesawat sesungguhnya. Sayap akan bergetar dan berosilasi bertambah besar menuju ke keadaan tidak stabil. Osilasi osilasi membuat osilasi yang lebih besar terjadi sehingga frekuensi dan damping pada daerah kecepatan tertentu dengan mudah terlihat apabila terjadi flutter pada model separuh sayap. Penelitian ini, digunakan model separuh sayap dari pesawat N219 yang di uji pada terowongan angin kecepatan rendah BBTA3, kawasan Puspiptek, Serpong. Kecepatan flutter terjadi pada 40,5 m/s pada hasil analisis komputasional dan hasil pengujian di terowongan angin sebesar 40,83 m/s.

[The Analysis of Half Wing Flutter Test N219 Aircraft Model in The Low Speed Wind Tunnel] The flutter phenomenon will occur when the aerodynamic force and moment excessively interacted on the wing surface, whether it takes place in the wind tunnel or on the real aircraft. The wing will vibrate and oscillate towards an unstable condition. Each oscillation will subsequently build a greater one until the damping and frequency on a certain speed range can be seen easily when flutter occur on the half wing model. On this research, the half wing model of N219 aircraft was tested in the low speed wind tunnel of BBTA3, Puspitek Serpong. The flutter speed occurred at 40,5 m/s based on computational analysis while the wind tunnel result is at the speed of 40,83 m/s.

Keywords


aliran fluida; partikel; frekuensi; redaman; kecepatan rendah; terowongan angin.

Full Text:

PDF

References


Bennet, R. M., Application of Zimmerman Flutter-Margin Criterion to a Wind-Tunnel Model, NASA Technical Memorandum, Hampton, Virginia, 1982.

Hodges, D. H. dan G. A. Pierce, Introduction to Structural Dynamics and Aeroelasticity, USA: Cambridge University, 2012.

Kehoe, M. W., NASA Technical Memorandum 4720: A historical Overview of Flight Flutter Testing, NASA, Edwards, California, 1995.

Mahasti, Katia Mayang., Arifin,  Moh. Sjamsoel., N219 Half Wing Flutter Model

Updated Based on GVT BBT A3, Engineering Data Management, PT. Dirgantara Indonesia, 2016.

MSC. Software Corporation, MD Nastran 2010: Design Sensitivity and Optimization User’s Guide, Santa Ana: MSC.Software Corporation, 2010.

Software, MSC. NASTRAN Aeroelastic Analysis User’s Guide, Santa Ana: MSC. Software Corporation, 2004.

PMTP, Pengujian Terowongan Angin Half-Wing Flutter Model N-250, IPTN, Bandung, 1994.

Schaeffer., H. MSC/NASTRAN Primer—Static and Normal Modes Analysis, Wallace Press, Milford, 1988.

Schlippe B. Von., The Question of Spontaneous Wing Oscilation (Determination of Critical Velocity Through Flight-Oscilation Tests), NACA TM-806, 1936.

Tang, D. dan E. H. Dowell., Experimental Aeroelastic Models Design and Wind Tunnel Testing for Correlation with New Theory, Aerospace, vol. 3, no. 12, 2016.

Wright, J. E. C. Jan R., Introduction to Aircraft Aeroelastikity and Loads, England, Wiley, 2007.




DOI: http://dx.doi.org/10.25104/wa.v42i4.246.165-172

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

WARTAARDHIA Indexed by:

      Infobase Index  Logo IPI  Home  

Copyright of Warta Ardhia (e-ISSN:2528-4045, p-ISSN:0215-9066) Sekretariat Jurnal Transportasi Udara, Jl. Medan Merdeka Timur No. 5 A Jakarta Pusat 10110. Tlp. (021) 34832944, Fax. (021) 34832968. Email:litbang_udara@yahoo.co.id; warta.ardhia@gmail.com.

    Creative Commons License 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web
  Analytics View My Stats